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Abstract This paper reconsiders the Bargaining Problem of Nash (Econometrica
28:155–162, 1950). I develop a new approach, Conditional Bargaining Problems, as
a framework for measuring cardinal utility. A Conditional Bargaining Problem is the
conjoint extension of a Bargaining Problem, conditional on the fact that the individ-
uals have agreed on a “measurement event”. Within this context, Subjective Mixture
methods are especially powerful. These techniques are used to characterise versions
of the Nash and the Kalai–Smorodinsky solutions. This approach identifies solutions
based only on the individuals’ tastes for the outcomes. It is therefore possible to do
Bargaining theory in almost complete generality. The results apply to Biseparable
preferences, so are valid for almost all non-expected utility models currently used in
economics.

Keywords Bargaining · Utility · Subjective mixtures · Biseparable preferences
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1 Introduction

Situations where people could, by reaching some agreement, enjoy mutual benefits
are pervasive in economic life. Typically, in such situations, there is more than one
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16 C. S. Webb

agreement that could be chosen. The question of how an agreement is reached is known
as the Bargaining Problem. Since Nash (1950), there has been extensive research on
axiomatic approaches to the Bargaining Problem. A recent survey of this literature is
Thomson (2009).

Following Nash (1950), a two-person Bargaining Problem is typically modelled
as a set of utility pairs. Each utility pair assigns a utility value to each individual.
One utility pair is designated the disagreement point; the utilities each receive should
they fail to reach agreement. A Bargaining Solution is a rule that uses the data of any
Bargaining Problem to select one of the possible utility pairs.

The set of possible utility pairs, associated with a Bargaining Problem, is frequently
assumed to be convex. There are several plausible justifications for the convexity
assumption. Nash’s original interpretation is as follows: assume that each person has
preferences represented by expected utility. The set of feasible utility pairs is the image
of some underlying set of alternatives. Suppose that lotteries over these alternatives are
feasible, then, if two alternatives are graphed to two utility pairs, the lotteries over these
alternatives are graphed to a line connecting these utility pairs. It is this interpretation
that will be discussed. The use of lotteries is also assumed by many papers addressing
the preference foundations of Bargaining Theory (Rubinstein et al. 1992; Grant and
Kajii 1995; Safra and Zilcha 1993; Hanany and Safra 2000; de Clippel 2009).

The use of lotteries serves an important purpose in the modelling of the Bargaining
Problem. It allows us to measure utilities. That is, since the underlying set of alter-
natives has a Mixture Space structure (Herstein and Milnor 1953), it can be proved
conclusively that Expected Utility representations exist and, further, that the utility
functions for outcomes will be cardinally unique. There are, however, cases where we
may not be able to demonstrate the existence of cardinal utility.

Consider the following example: Two professors are given the task of making a
“superstar” appointment. They are asked to agree on and hire the most important aca-
demic. There are no other concerns. Each professor considers the pool of available
academics. Each professor can order the set of academics, in terms of importance,
although their orders do not agree. They approach an arbitrator who is trained in the
tools of utility measurement. The arbitrator takes their ‘importance orders’ and con-
structs numerical representations. These representations of the importance orders are,
essentially, ordinal utility functions. The two sets of importance rankings, however,
lack a suitable notion of concatenation. That is, we are unable to say that a professor
considers one academic to be “twice as important as another” because we are unsure
what “twice as important ” means. Unless we consider the mixed, or some other exten-
sion of the problem, I believe we can do no better than ordinal utility (Krantz et al.
1971, p. 123). A stronger statement is made by Fleurbaey and Hammond (2004):

“If X is simply a set of riskless alternatives, then it is impossible to derive cardi-
nally measurable utility functions from individual preferences over this set alone
. . . it needs preferences over lotteries, for instance.” (p. 1227)

We have a simple problem, “agree on an academic”. A sensible solution should
reflect the preferences of each individual, and also involve some compromise. A result
of Shapley (1969) states, roughly, that it is impossible to find a sensible solution using
only ordinal information. Defining a sensible solution requires further knowledge
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Bargaining with subjective mixtures 17

about the structure of preferences. Shapley’s theorem says that we really need utilities
to be cardinal, and Herstein and Milnor’s theorem reassures us that the use of lotteries
delivers this.

Probability provides the currency with which a von Neumann–Morgenstern utility
is measured. Expected Utility is linear in probabilities. This corresponds to what has
become known as Probabilistic Risk Neutrality (Wakker 1994). Empirical evidence
suggests people’s preferences are not typically neutral in this sense (Kahneman and
Tversky 1979; Machina 1987). Non-expected utility is the theory of such preferences.

Most Bargaining Solutions are distorted by probabilistic risk attitudes. Köbberling
and Peters (2003) demonstrated that, in the context of the Rank-Dependent Utility
model (Quiggin 1982), probabilistic risk attitudes affect the solution of Kalai and
Smorodinsky (1975) in a predictable way. Other things being equal, you will never be
better off if you bargain against someone more probabilistically risk averse.

Consider the “agree on an academic” problem, extended to include lottery agree-
ments. Suppose it is agreed, using the Kalai–Smorodinsky solution, that each professor
will receive some chance of appointing the academic they consider most important,
then the chance each professor receives will be affected by the probabilistic risk atti-
tudes of the other. The fact that the mixed extension has been used has, in itself,
introduced biases that have distorted the solution. Such attitudes, however, have noth-
ing to do with the professors’ judgements about the academics’ importance. It is my
opinion that, where possible, the solution to the problem should depend only on each
individual’s preferences over the outcomes.

To address the problem discussed above, this paper introduces a new approach.
Section 3 outlines the concept of a Conditional Bargaining Problem. This may be
thought of as the ‘conjoint extension’ of a Bargaining Problem. This approach allows
us to apply the modern tools of Conjoint Measurement; previously applied to establish
the foundations of many non-Expected Utility models. In particular, the Subjective
Mixture techniques of Ghirardato et al. (2003) are especially powerful. We outline
Subjective Mixtures in Sect. 4. Section 5 gives two applications of the above tech-
niques, providing characterisations of the Nash and the Kalai–Smorodinsky Bargain-
ing Solutions, as applied to Conditional Bargaining Problems. These applications
highlight the usefulness of applying Subjective Mixtures in the context of Conditional
Bargaining Problems. The result is a theory of Bargaining that works in almost com-
plete generality. That is, the results are robust to the majority of non-Expected Utility
models used in economics.

2 Nash’s Bargaining Problem

In this Sect. 3 outline the two-person bargaining model introduced by Nash (1950). In
Nash’s formulation, a Bargaining Problem is a tuple ⟨U, a⟩. The Feasible Set is a set
utility of pairs, U ⊂ R2. A point (α,β) ∈ U assigns a utility value of α for individual
1 and β for individual 2. The Disagreement Point, a = (a1, a2) ∈ U , is the utilities
that each individual receives if they fail to agree on any other candidate from U .

Nash assumes that U is compact and convex. Nash also assumes there is some
β ∈ U such that β1 > a1 and β2 > a2. A Bargaining Problem is called compact

123



18 C. S. Webb

or convex if U has the associated property. Nash’s interpretation of the assumed
convexity is as follows: The set of utility pairs is the expected utility image of some
set of alternatives and, whenever two alternatives are feasible, any lottery over them is
feasible.

A weaker condition than convexity is Comprehensiveness. A problem ⟨U, a⟩ is
a-Comprehensive if y ! x ! a and y ∈ U jointly imply x ∈ U . The Comprehen-
sive hull of a set U with respect to a point a, denoted comp[U ; a], is the smallest
a-Comprehensive set containing U . We will make use of the following notation:

Φ1(α; U ) := {β ∈ R : (β,α) ∈ U }

So Φ1(α; U ) is the set of utility values that are feasible for individual 1 when 2 gets
utility α. Φ2(α; U ) is defined similarly.

Let B be some class of Bargaining Problems. A Bargaining Solution defined over
B is a function, S : B → R2, that selects, for any Bargaining Problem, a unique and
feasible point. Specific solutions can be obtained by restricting S to satisfy certain
consistency properties or axioms. Section 5 outlines two such Bargaining Solutions:
the Nash and the Kalai–Smorodinsky Solutions.

3 Conditional Bargaining Problems

The tuple ⟨A, d,"1,"2, E⟩ is a Conditional Bargaining Problem. Here, A ⊆ X1×X2
is the feasible set of alternatives. Elements of Xi are xi , called outcomes. So an alter-
native is a pair (x1, x2) where each individual receives an outcome. The Disagreement
Alternative is d = (d1, d2).

It is useful to introduce, briefly, the Savage (1954) framework. There is a set of states,
S = {. . . , s, . . .}. The individuals do not know which state will obtain, but that only
one will. Subsets of S are events, the set of which is E = 2S = {. . . , E, E ′, . . .}.
For ease of exposition, we will assume E is finite. Acts are functions from states to
outcomes f : S → Xi .

Write xi Eyi for the act with outcome xi if s ∈ E and yi otherwise. An act xi Eyi
is a Binary Act. Preferences "i are defined over the set of Binary Acts. All events are
Essential with respect to each individual’s preferences: xi ≻i xi Eyi ≻i yi for some
xi , yi ∈ Xi . Outcomes xi ∈ Xi are naturally identified with constant Binary Acts,
xi Exi , and the restriction of preferences to outcomes is also written "i . I make the
simplifying assumption that there are no two distinct outcomes, for either individual,
such that xi ∼i x ′

i . This will amount to preferences being antisymmetric. A minor
modification of the theory, to dispense with this assumption, will mean solutions are
identified only up to their equivalence class (see Rubinstein et al. 1992, p. 1173). All
Conditional Bargaining Problems will satisfy the following structural assumption:

Structural Assumption 1 X1 and X2 are compact and connected in some topolo-
gies, T1 and T2, respectively. A is compact in the product topology T1 × T2. The
disagreement alternative is feasible and there is some (x1, x2) ∈ A with x1 ≻1 d1 and
x2 ≻2 d2.
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Bargaining with subjective mixtures 19

For an example of this framework, let us return to the “agree on an academic”
example of the introduction. The problem could be modelled so that each professors
outcome set Xi is the [0, 1] interval, perhaps with 0 being the least important and 1
the most important in their opinion. The agreements can be modelled as a compact
subset of [0, 1] × [0, 1]. Any alternative, a decision about who to employ, can be
viewed as each professor receiving some point on their subjective importance scales.
Some candidate is the disagreement alternative, perhaps the candidate that the Dean
considers most important. This example models the pool of talent as a continuum,
which is clearly an idealisation. I believe such modelling choices are both accept-
able and commonly used. It would be difficult, however, to motivate the assumption
that the pool of talent is a mixture set. A simpler example of this framework is the
problem of dividing £100 between two people, with a disagreement alternative of
each receiving zero. In this case, we can take Xi = [£0, £100] for i = 1, 2 and let
A = {(£x1, £x2) ∈ X1 × X2 : £x1 + £x2 # £100}.

For a fixed event E ∈ E , an act xi Eyi with xi , yi ∈ Xi and xi "i yi is an E-Bet. The
set of E-Bets is X2

!i
(E) := {xi Eyi : xi , yi ∈ Xi , xi "i yi }. It is a rank-ordered subset

of the product set X2
i , with the rank-ordering agreeing with "i . Each set of E-bets

is endowed with the (restriction of the) product topology Ti × Ti . Connectedness of
X2

!i
(E) follows from Wakker (1989) Lemma 7.2.

Each individual has preferences satisfying the following axioms:

A1 (Weak Ordering) Preferences for Binary Acts are complete and transitive.
A2 (Dominance) If xi ≻i x ′

i and yi ≻i y′
i then xi Eyi ≻i x ′

i Ey′
i .

A3 (Continuity) For each E ∈ E and any xi Eyi ∈ X2
!i

(E), the lower and upper
preference sets of E-Bets:{

x ′
i Ey′

i ∈ X2
!i

(E) : xi Eyi ≻i x ′
i Ey′

i

}
&

{
x ′

i Ey′
i ∈ X2

!i
(E) : x ′

i Ey′
i ≻i xi Eyi

}

are open.
A4 (Tradeoff Consistency) The following implication holds, where xi Eyi , x ′

i Ey′
i ,

zi Eyi and z′
i Ey′

i are E-Bets, and wi E ′xi , w′
i E ′x ′

i , wi E ′zi and w′
i E ′z′

i are
E ′-Bets:

xi Eyi ∼i x ′
i Ey′

i &zi Eyi ∼i z′
i Ey′

i &wi E ′xi ∼i w′
i E ′x ′

i ⇒wi E ′zi ∼i w
′
i E ′z′

i

The first three axioms are well known. The E-Tradeoff Consistency axiom captures
the idea that we may consistently measure cardinal utility differences. It imitates the
idea of strength of preferences (see Köbberling 2004), but without the need to take
strengths of preferences as a primitive. The first two indifferences can be interpreted
as follows: Keeping everything else fixed, replacing the first coordinate xi with x ′

i has
the same effect as replacing zi with z′

i . This reveals that the strength of preference
between xi and x ′

i is the same as that between zi and z′
i . The consistency requirement

ensures that this interpretation is free of contradiction. That is, if we then find suitable
wi and w′

i to generate the third indifference, then replacing the xi and x ′
i with zi and

z′
i again should maintain the indifference.
The following theorem is due to Köbberling and Wakker (2003, p. 403). Note that

separability is not required here as all events are assumed to be essential (see Wakker
1989, “Appendix A3”):
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20 C. S. Webb

Theorem 2 (Köbberling and Wakker 2003) Let preferences "i be defined over Binary
Acts and satisfy axioms A1–A4. Then there is a real-valued, increasing function ui on
Xi that is continuous in the topology Ti and a real-valued function ρi : E → (0, 1)

such that for any xi Eyi , x ′
i E ′y′

i :

xi Eyi "i x ′
i Ey′

i

⇔ ρi (E)ui (xi ) + (1 − ρi (E))ui (yi ) ! ρi (E ′)ui (x ′
i ) + (1 − ρi (E ′))ui (y′

i )

The function ρ is unique. The function ui is cardinally unique.

The function ui is called individual i ′s utility function for outcomes. The function
ρ is often called a capacity. Referring back to the Tradeoff Consistency axiom, the
implications are twofold. Firstly, we may consistently measure cardinal utility using
E-Bets and secondly, it does not matter which (essential) event E we choose to take
the measurements. For the Conditional Bargaining Problem, an event E is chosen in
advance and will remain fixed throughout the paper.

Following Ghirardato and Marinacci (2001), preferences admitting the above rep-
resentation will be called Biseparable. Essentially the same theory has been presented
by Pfanzagl (1959, 1968), as Generic Utility by Miyamoto (1988) and as Binary Rank-
Dependent Utility in Luce (1991, 2000). The renewed interest, and current popularity,
of Biseparable preferences is because most of the popular models of choice coincide
for rank-ordered Binary Acts, or E-Bets. Examples include the following: Expected
Utility, Choquet Expected Utility (Gilboa 1987; Schmeidler 1989), Maxmin Expected
Utility (Gilboa and Schmeidler 1989). A thorough survey, with many more examples,
is given by Wakker (Wakker 2010: 230–231 and 298–299). Recent studies and appli-
cations of the Biseparable model include Cerreia-Vioglio et al. (2011), and Eichberger
et al. (2008) studying ambiguity, and Ryan (2002) in the context of epistemic game
theory.

Let Vi (xi Eyi ) ≡ ρi (E)ui (xi ) + (1 − ρi (E))ui (yi ). As ui (xi ) ≡ Vi (xi Exi ), the
dominance axiom ensures that preferences for outcomes are represented by ui . Define
the certainty equivalent function ci : X2

!i
(E) → Xi as ci (xi Eyi ) := {zi ∈ Xi :

ui (zi ) = Vi (xi Eyi )}. Given the structure and preferences here, the certainty equiva-
lent function is a well-defined, continuous and "i -increasing function.

With the utilities obtained as above, we write u(A) as the utility image of a feasible
set A. That is, u(A) := {(u1(x1), u2(x2)) ∈ R2 : (x1, x2) ∈ A}. Let Mi (A) be the
"i -maximal outcome in A. Such outcomes exist as preferences are continuous and
A ⊆ X1 × X2 is compact. When the context is clear, we will write Mi and M ′

i , rather
than Mi (A) and Mi (A′).

For ease of exposition, we will occasionally restrict attention to sets of Conditional
Bargaining Problems that are normal, defined below:

Definition 3 (Normality) A Conditional Bargaining Problem, ⟨A, d,"1,"2, E⟩, is
normal if it satisfies Structural Assumption 1 and for any (x1, x2) ∈ A, for both i we
have xi "i di .

To clarify, although we will assume normality at some points to ease exposition,
the main theorems presented will not require this restriction.
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Bargaining with subjective mixtures 21

The basic task of Bargaining Theory is to identify a feasible alternative as a solu-
tion to the problem. For a given event, E , write BE as the set of all Conditional
Bargaining Problems satisfying Structural Assumption 1. A Solution is a function,
SE : BE → X1 × X2, that assigns a unique, feasible alternative to any Conditional
Bargaining Problem.

4 Subjective mixtures

This section outlines the notion of Subjective Mixtures due to Ghirardato et al. (2003)
(GMMS from here on). GMMS introduced this theory in order to bring a mixture
space-type structure to the purely subjective framework of Savage. In doing so, a tool
was developed by which results derived in the classic Anscombe–Aumann framework
can be immediately translated to that of Savage.

GMMS begin with the notion of a Preference Average, defined as follows:

Definition 4 (Preference Average) Given two outcomes xi ≻i yi , the Preference
Average of xi and yi (given E) is an outcome zi satisfying xi ≻i zi ≻i yi and,

xi Eyi ∼i ci (xi Ezi )Eci (zi Eyi )

GMMS outline several justifications for the use of the term ‘Preference Average’.
Firstly, for any z′

i , z′′
i ∈ Xi with xi "i {z′

i , z′′
i } "i yi it can be shown that Bisepara-

ble preferences necessarily imply ci (xi Ez′
i )Eci (z′′

i Eyi ) ∼i ci (xi Ez′′
i )Eci (z′

i Eyi ).
GMMS interpret this to mean that the inner outcomes z′

i , z′′
i of the compound

acts play a symmetric role when the individual evaluates these bets. Since I iden-
tify xi Exi with the outcome xi = ci (xi Exi ) the condition may be rewritten as
ci (xi Exi )Eci (yi Eyi ) ∼i ci (xi Ezi )Eci (zi Eyi ). The term Preference Average is jus-
tified then observing the inner xi and yi play a symmetric role in the evaluation of the
E-bets and replacing xi and yi with zi retains the indifference. In short, zi implies the
kind of conditions we would expect of any general ‘average’ of xi and yi .

The second justification for the term Preference Average is seen by substituting the
Biseparable representation obtained in Theorem 2. GMMS show in their Proposition
1 that zi is a Preference Average of xi and yi iff:

ui (zi ) = 1
2

ui (xi ) + 1
2

ui (yi )

For the considered preferences, Preference Averages precisely identify utility mid-
points. Note that the class of Biseparable preferences includes the following: Subjec-
tive Expected Utility preferences (Savage 1954), Choquet Expected Utility preferences
(Gilboa 1987; Schmeidler 1989) and Multiple-Prior preferences (Gilboa and Schmei-
dler 1989). So the above holds for most of the popular models of choice under uncer-
tainty currently used in economics. Note that Preference Averages always exist:

Lemma 5 For any preference relation "i satisfying axioms A1, A2, A3 and A4 and
outcomes xi ≻i yi , a unique Preference Average of xi and yi exists.
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22 C. S. Webb

All proofs are collected in the Appendix. Denote the Preference Average of xi and
yi as 1

2 xi ⊕i
1
2 yi . Then, call 1

2 xi ⊕i
1
2 yi a 1/2 : 1/2 Subjective Mixture of xi and yi . It is

then possible to define 3
4 xi ⊕i

1
4 yi as the Preference Average of xi and 1

2 xi ⊕i
1
2 yi . Pro-

ceeding in this way it is possible to define Subjective Mixtures for any dyadic rational
and, appealing to the continuity of preferences, to construct any α : (1−α) Subjective
Mixture of xi and yi , denoted αxi ⊕i (1 − α)yi . GMMS proved the following:

Theorem 6 (Ghirardato et al. 2003) For any preference relation "i satisfying axioms
A1, A2, A3 and A4:

zi = αxi ⊕i (1 − α)yi ⇔ ui (zi ) = αui (xi ) + (1 − α)ui (yi )

It is clear that αMi ⊕i (1 −α)di equals Mi when α = 1 and equals di when α = 0.
The following monotonicity condition also follows immediately: αMi ⊕i (1−α)di ≻i
βMi ⊕i (1−β)di whenever α > β. In view of this monotonicity, the continuity of the
⊕i operation, and connectedness of Xi , every outcome xi ∈ Xi with Mi "i xi "i di
is a α : 1 − α Subjective Mixture of Mi and di for a unique α ∈ [0, 1]. For fixed
Mi and di , given antisymmetry of preferences, the correspondence between outcomes
and Subjective Mixtures is one-to-one.

The Subjective Mixture operation, ⊕i , is defined over each individual’s outcome
set. That is, we can refer to an outcome zi being a Subjective Mixture of two other
outcomes. Define a Subjective Mixture operation, ⊕, over alternatives coordinatewise:

α(x1, x2) ⊕ (1 − α)(y1, y2) := (αx1 ⊕1 (1 − α)y1,αx2 ⊕2 (1 − α)y2)

A Conditional Bargaining Problem is Subjective Mixture Closed if the following impli-
cation holds:

{(x1, x2), (y1, y2) ∈ A} ⇒ 1
2
(x1, x2) ⊕ 1

2
(y1, y2) ∈ A

Subjective mixture closedness is clearly equivalent to midpoint convexity of u(A), by
Theorem 6, and since u(A) is compact we have:

Observation 7 A Conditional Bargaining Problem is Subjective Mixture Closed if
and only if u(A) is convex.

The condition of subjective mixture closedness is a joint restriction on the prefer-
ences of each individual and the structure of the set of alternatives. It is, essentially,
a testable hypothesis. It does, however, hold naturally in certain important cases. For
example, the problem of dividing £100 between two people with a disagreement alter-
native of each receiving zero. In this case we took Xi = [£0, £100] for i = 1, 2 and let
A = {(£x1, £x2) ∈ X1 × X2 : £x1 +£x2 # £100}. A Conditional Bargaining Problem
with this set of alternatives and disagreement will be Subjective Mixture Closed if the
individuals have utilities u1 and u2 that are concave. “Utility that is concave in money”
seems to be more empirically relevant than “utility that is linear in probabilities”.

A weaker condition than subjective mixture closedness is Comprehensiveness.
A Conditional Bargaining Problem ⟨A, d,"1,"2, E⟩ is d-Comprehensive if yi "i
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Bargaining with subjective mixtures 23

xi "i di for i = 1, 2 and y ∈ A jointly imply x ∈ A. The Comprehensive hull of a set
A with respect to an alternative d, denoted comp[A; d], is the smallest d-Comprehen-
sive set containing A. The following observation follows from elementary substitution
of the preference functionals:

Observation 8 A Conditional Bargaining Problem is d-Comprehensive if and only if
u(A) is u(d)-Comprehensive.

We will make use of the following notation:

%1(α; A,⊕1,⊕2) := {β ∈ [0, 1] : (βM1 ⊕1 (1 − β)d1,αM2 ⊕2 (1 − α)d2) ∈ A}

So %1(α; A,⊕1,⊕2) is the set of β ′s such that a β : 1 − β Subjective Mixture of
individual 1′s best and disagreement outcomes is feasible when 2 has an α : 1 − α

Subjective Mixture of their best and disagreement outcomes. %2(α; A,⊕1,⊕2) is
defined similarly.

5 Applications

5.1 The Conditional Nash Solution

As a first application of Subjective Mixtures to Conditional Bargaining Problems, this
section provides a preference foundation for a Conditional version of the Bargain-
ing Solution of Nash (1950). For a Bargaining Problem, ⟨U, a⟩, the Nash Bargaining
Solution, N , is the feasible point (λ1, λ2) ∈ U such that:

(λ1, λ2) = arg max(β1,β2)"(a1,a2)
{(β1 − a1)(β2 − a2)}

The Nash Bargaining Solution maximises the product of positive utility differences
from the disagreement point. Although the formula itself is simple, the behavioural
content of the solution is not immediately clear. An interpretation of the Nash Bar-
gaining Solution, in the context of risky lotteries, has been provided by Rubinstein
et al. (1992), and we will discuss a version of this in what follows.

Nash considered the following axioms for a Bargaining Solution S, defined over
the class of compact and convex Bargaining Problems:

Axiom S1 (Pareto Efficiency): If S(⟨U, a⟩) = (α,β) then there is no (α′,β ′) ∈ U
such that α′ ! α, β ′ ! β and (α′,β ′) ̸= (α,β).
Axiom S2 (Symmetry): If ⟨U, a⟩ is such that a1 = a2, and for all α ∈ R we have
Φ1(α; U ) = Φ2(α; U ), then S1(⟨U, a⟩) = S2(⟨U, a⟩).
Axiom S3 (Contraction Independence): If V ⊆ U and S(⟨U, a⟩) ∈ V then
S(⟨U, a⟩) = S(⟨V, a⟩)
Axiom S4 (Cardinal Invariance): If ⟨U ′, a′⟩ is obtained from ⟨U, a⟩ by an affine
transformation u′

i = γi ui + δi , γi > 0, δi ∈ R, i = 1, 2, then Si (⟨U ′, a′⟩) =
γi Si (⟨U, a⟩) + δi .
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24 C. S. Webb

For a discussion of these axioms see Thomson (2009). The interpretation of Contrac-
tion Independence is, keeping the disagreement point fixed, when a solution is chosen
out of a large set, and a smaller subset contains this solution, then the solution still
holds for the smaller problem. Presumably, those points not chosen in the larger prob-
lem are already excluded from consideration when the smaller problem is examined.
We will discuss this more in what follows. Nash (1950) proved the following:

Theorem 9 (Nash 1950) A Bargaining Solution, defined over the class of compact
and convex Bargaining Problems, is the Nash Solution if and only if it satisfies the
Pareto Efficiency, Symmetry, Cardinal Invariance and Contraction Independence axi-
oms (S1, S2, S3 and S4).

In what follows, we will obtain a version of the Nash Solution for Conditional
Bargaining Problems. Preference axioms that characterise the solution will be pre-
sented. It will be useful to first obtain a new axiomatisation of the Nash Solution. This
is because the Cardinal Invariance axiom becomes, essentially, redundant as a pref-
erence condition. By itself, all Cardinal Invariance does is allow us to meaningfully
discuss utility axioms. However, if we attempt to simply translate the remaining axioms
into preference conditions, we will not get far. This is because Cardinal Invariance,
although redundant by itself, actually adds empirical content to the other axioms.
So, the important step is to remove Cardinal Invariance from the axiom set. Then,
restate the remaining axioms, but embedding the preference implications of Cardinal
Invariance in each. I therefore suggest the following:

Axiom S2* (Cardinal Utility Symmetry): If, for a problem ⟨U, a⟩, there exists some
affine transformations of the utilities, u′

i = γi ui +δi , with γi > 0, δi ∈ R, i = 1, 2,
such that:

i. a′
1 = a′

2
ii. For all α ∈ R, Φ1(α; U ′) = Φ2(α; U ′)

then γ1S1(⟨U, a⟩) + δ1 = γ2S2(⟨U, a⟩) + δ2.

The Cardinal Utility Symmetry axiom states that when a Bargaining Problem can be
transformed, by positive affine transformations of the utilities, such that the problem
becomes symmetric, then the solution to the original problem will map to a symmetric
point. The Cardinal Utility Symmetry axiom implies the Symmetry axiom. To see
this, simply restrict the permissible transformations to be the identity map. Similarly,
amend Contraction Independence as follows:

Axiom S3* (Cardinal Contraction Independence): For the problems ⟨U, a⟩ and
⟨V, b⟩, if there exists some affine transformations of the utilities u′

i = γi ui + δi
and v′

i = γ ′
ivi + δ′

i , with γi , γ
′
i > 0, δi , δ

′
i ∈ R and i = 1, 2, such that:

i. a′ = b′

ii. V ′ ⊆ U ′

iii. (γ1S1(⟨U, a⟩) + δ1, γ2S2(⟨U, a⟩) + δ2) ∈ V ′

Then,

(γ1S1(⟨U, a⟩)+δ1, γ2S2(⟨U, a⟩)+δ2)=(γ ′
1S1(⟨V, b⟩)+δ′

1, γ
′
2S2(⟨V, b⟩)+δ′

2)
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Cardinal Contraction Independence requires that if two Bargaining Problems can be
affinely transformed so that: the transformed disagreement points coincide, one trans-
formed problem contains the other, and the solution to the first is mapped to a point
contained in the other transformed problem, then the solution to the first problem is
mapped to the same point as the solution to the other problem. Of course, by restricting
the permissible transformations to the identity map, we see that Cardinal Contraction
Independence implies Contraction Independence. We can now state our axiomatisation
of the Nash Bargaining Solution:

Theorem 10 A Bargaining Solution, defined over the class of compact and convex
problems, is the Nash Solution if and only if it satisfies the Pareto Efficiency, Cardinal
Utility Symmetry and Cardinal Contraction Independence axioms (S1, S2* and S5*).

The proof of Theorem 10 is presented in “Appendix A.2”. Theorem 10 is useful
because translating Cardinal Contraction Independence S5* to a preference axiom in
the Conditional Bargaining Problem framework is simplified.

To define a Nash-type Solution for Conditional Bargaining Problems, I adapt the
Ordinal Nash Solution of Rubinstein et al. (1992), RST. The Conditional Nash Solution
is defined as follows:

Definition 11 A Conditional Nash Solution, for a Conditional Bargaining Problem
⟨A, d,"1,"2, E⟩, is an alternative (y1, y2) satisfying the following condition:

{
α ∈ [0, 1], (x1, x2) ∈ A,

αxi ⊕i (1 − α)di ≻i yi

}
⇒ x j $ j αy j ⊕ j (1 − α)d j

The interpretation of the Conditional Nash Solution is as follows. Suppose the can-
didate (y1, y2) is on the table and, for the sake of clarity, that α = 1/2. Individual i
views his proposed outcome as ‘not even half as good’ as another and suggests this
instead. The other individual sees the newly suggested outcome as ‘not even half as
good’ as the one on the table. As neither individual’s claim is stronger, in terms of
intensity of preference, changing from the alternative on the table could be deemed
‘unfair’ to at least one individual. Once a Conditional Nash Solution is on the table, all
other alternatives can be similarly dismissed. Whenever this solution is well defined
and preferences are Biseparable, it follows by a reasoning similar to Proposition 1 of
RST that the solution is the alternative which maximises the product of utility dif-
ferences from the disagreement alternative. The following observation follows from
elementary substitution of the preference functionals:

Observation 12 If preferences are Biseparable, then an alternative (y1, y2) ∈ A is a
Conditional Nash Solution for a Conditional Bargaining Problem ⟨A, d,"1,"2, E⟩
if and only if:

(u1(y1), u2(y2)) = arg maxx1!1d1,x2!2d2
{(u1(x1) − u1(d1))(u2(x2) − u2(d2))}

We will now obtain a characterisation of the Conditional Nash Solution. That is,
we will consider an arbitrary Conditional Bargaining Solution, S, and restrict S by
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imposing three axioms: Pareto Efficiency, Subjective Symmetry and Subjective Con-
traction Independence. It will be shown that an arbitrary solution S satisfying these
axioms is equivalent to S being the Conditional Nash Solution. The Pareto Efficiency
axiom is already known, being a simple translation of axiom S1:

Axiom P1 (Pareto Efficiency) If S(⟨A, d,"1,"2, E⟩) = (x1, x2), then there is no
(y1, y2) ∈ A such that, for i ̸= j , yi "i xi and y j ≻ j x j .

My second axiom, Subjective Symmetry, plays a similar role to Cardinal Utility
Symmetry. The Cardinal Utility Symmetry axiom involves comparisons of utility num-
bers between the two individuals. This is perfectly acceptable, it is simply comparing
numbers. It is not immediately clear, however, what is implied for the underlying
preferences because the utilities are not uniquely determined. To state an axiom for
preferences that is equivalent to Cardinal Utility Symmetry, it is useful to have an
appropriate unit of currency for interpersonal comparisons. This is where Subjective
Mixtures are particularly useful, and I use them to define the axiom.

Axiom P2 (Subjective Symmetry): If, for a Conditional Bargaining Problem
⟨A, d,"1,"2, E⟩, the set of alternatives A is Subjectively Symmetric, that is, it
is such that, for any α ∈ [0, 1], %1(α; A,⊕1,⊕2) = %2(α; A,⊕1,⊕2), then the
solution S(⟨A, d,"1,"2, E⟩) is also Subjectively Symmetric.

The interpretation of Subjective Symmetry is as follows. A Conditional Bargaining
Problem is Subjectively Symmetric if: Whenever there is a feasible alternative where
individual 1 receives an α, and 2 receives a β Subjective Mixture of the best and dis-
agreement outcomes respectively, then there is a feasible alternative that gives 1 a β and
2 an α Subjective Mixture of the best and disagreement outcomes, respectively. The
Subjective Symmetry axiom demands that, when the Conditional Bargaining Prob-
lem is Subjectively Symmetric, the solution should also be Subjectively Symmetric.
That is, each should receive an outcome that uses the same λ Subjective Mixture. The
following lemma provides a preference foundation for the Cardinal Utility Symmetry
condition:

Lemma 13 If preferences are Biseparable then a Conditional Bargaining Solution,
defined over the class of normal Conditional Bargaining Problems, satisfies Subjective
Symmetry (P2) if and only if it satisfies Cardinal Utility Symmetry (S2*) with respect
to the utilities concerned.

The final axiom introduced in this section is the following:

Axiom P3 (Subjective Contraction Independence): If, for two Conditional Bargain-
ing Problems ⟨A, d,"1,"2, E⟩ and ⟨A′, d ′,"1,"2, E⟩, the following conditions
hold:

i. For all α ∈ [0, 1], i = 1, 2, %i (α; A′,⊕1,⊕2) ⊆ %i (α; A,⊕1,⊕2).
ii. S(⟨A, d,"1,"2, E⟩) = (λ1 M1 ⊕1 (1 − λ1)d1, λ2 M2 ⊕2 (1 − λ2)d2)

iii. (λ1 M ′
1 ⊕1 (1 − λ1)d ′

1, λ2 M ′
2 ⊕2 (1 − λ2)d ′

2) ∈ A′

Then S(⟨A′, d ′,"1,"2, E⟩) = (λ1 M ′
1 ⊕1 (1 − λ1)d ′

1, λ2 M ′
2 ⊕2 (1 − λ2)d ′

2).

Call one Conditional Bargaining Problem a Subjective Contraction of another if:
Whenever the problem contains an alternative where each receives some Subjective
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Mixture of their best and disagreement outcomes in that problem, then the other prob-
lem contains an alternative where the same Subjective Mixtures of (possibly different)
best and disagreement outcomes are used. The Subjective Contraction Independence
axiom insists that if one problem is a Subjective Contraction of another, but still
contains an alternative where each receives the same Subjective Mixture of best and
disagreement outcomes as the other problem’s solution, then that alternative is the
solution to the problem. The axiom does not necessarily imply the two solutions are
the same alternative, only that they each use the same Subjective Mixture values of
each problem’s best and disagreement outcomes.

An immediate consequence of the Subjective Contraction Independence axiom is
that the solution is now independent of the alternatives dominated by the disagreement
alternative. For ease of exposition, we will therefore suppose that the disagreement
outcomes are always each individual’s worst outcome. This is without loss of gener-
ality, as anything below the disagreement alternative can be deleted without affecting
the solution.

The simplest case where conditions i. and ii. hold is when A ⊆ A′ and, further, that
M = M ′ and d = d ′. In this case, we could call the contraction objective rather than
subjective. The Subjective Contraction Independence axiom, however, still has power
when A and A′ are disjoint. Such sets can be compared by examining which Subjective
Mixtures are feasible in each. When conditions i. and ii. hold, and preferences are Bi-
separable, there will always exist utilities such that the images of the feasible sets
are related by set inclusion. But, because the underlying sets of alternatives may be
disjoint, the name Independence of Irrelevant Alternatives is particularly inappropri-
ate here. As the following lemma proves the equivalence of Subjective Contraction
Independence and Cardinal Contraction Independence, the latter implying Contrac-
tion Independence, the comments above apply to that condition as well. Hence I also
offer an improved understanding of a known condition:

Lemma 14 If preferences are Biseparable, then a Conditional Bargaining Solution,
defined over the class of normal Conditional Bargaining Problems, satisfies Subjective
Contraction Independence (P3) if and only if it satisfies Cardinal Contraction Inde-
pendence (S3*) with respect to the utilities concerned.

This section concludes with a preference foundation for the Conditional Nash Solu-
tion.

Theorem 15 A Conditional Bargaining Solution, defined over the class of Subjective
Mixture Closed Problems satisfying Structural Assumption 1, with each individual hav-
ing Biseparable preferences, is the Conditional Nash Solution if and only if it satisfies
the Pareto Efficiency, Subjective Symmetry and Subjective Contraction Independence
axioms (P1, P2 and P3).

The use of GMMS’s Subjective Mixtures has allowed us to obtain a characterisation
of the Conditional Nash Solution. The use of Subjective Mixtures was necessary both
to interpret our restated axioms into preference conditions and to define the required
Subjective Mixture Closed structures.
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5.2 The Conditional Kalai–Smorodinsky Solution

This section provides a new foundation for the solution of Kalai and Smorodinsky
(1975), as applied to Conditional Bargaining Problems. We begin with the Kalai–
Smorodinsky result in the context of Bargaining Problems. As an interim result, I will
amend the Kalai–Smorodinsky axioms and provide a new foundation for the Kalai–
Smorodinsky Solution. This result paves the way for a preference foundation, derived
using Subjective Mixtures.

For a Bargaining Problem, ⟨U, a⟩, We will use the notation Bi (⟨U, a⟩) to denote the
maximal payoff for i in the set {α ∈ U : α ! a}. This is well defined as U is compact.
When the context is clear, we will simply write Bi . The utopia point is B = (B1, B2).

Kalai and Smorodinsky (1975) provided a characterisation of their solution over
the set of compact and convex problems. Following Conley and Wilkie (1991), we
will assume Comprehensiveness rather than convexity. Four axioms will characterise
the solution. Firstly, on the domain of comprehensive problems, we need to replace
Pareto Efficiency with Weak Pareto Efficiency:

Axiom S1* (Weak Pareto Efficiency): If S(⟨U, a⟩) = (α,β) then there is no
(α′,β ′) ∈ U such that α′ > α and β ′ > β.

See Theorem 1 of Conley and Wilkie (1991) for a simple explanation for why S1 must
be replaced with S1*. The Symmetry and Cardinal Invariance axioms, outlined in the
previous section, are also assumed. The final axiom, Individual Monotonicity, is the
following:

Axiom S5 (Individual Monotonicity): If ⟨U, a⟩ and ⟨V, b⟩ are such that U ⊆ V ,
Bi (⟨U, a⟩) = Bi (⟨V, b⟩), i ̸= j and a = b, then S j (⟨U, a⟩) ≤ S j (⟨V, b⟩).
The Kalai–Smorodinsky Solution, K , is the efficient point (α1,α2) such that,

(α1,α2) = λB + (1 − λ)a for some λ ∈ [0, 1]. The representation is simple: connect
the disagreement point a and utopia point B with a line and then select the efficient
point on this line. For the class of Bargaining Problems considered, K is well defined
and unique. Conley and Wilkie (1991) proved the following:

Theorem 16 (Conley and Wilkie 1991) A Bargaining Solution, defined over the class
of compact and a-comprehensive Bargaining Problems, is the Kalai–Smorodinsky
Solution if and only if it satisfies the Weak Pareto Efficiency, Symmetry, Cardinal
Invariance axioms and Individual Monotonicity axioms (S1*, S2, S4 and S5).

As with the axiomatisation of the Nash Solution, before considering a preference
foundation, I first restate Kalai and Smorodinsky’s axioms and provide a new char-
acterisation of their Solution. This interim result proceeds along similar lines to the
previous section. Remove the Cardinal Invariance axiom, S4, which is redundant
when discussing preferences. We have already obtained Cardinal Utility Symmetry
S2* in the previous section. Now adapt the Individual Monotonicity axiom, in a way
that retains the empirically meaningful consequences lent by Cardinal Invariance, as
follows:

Axiom S5* (Cardinal Utility Monotonicity): If, for the problems ⟨U, a⟩ and ⟨V, b⟩,
there exists some affine transformations of the utilities u′

k = γkuk + δk and v′
k =

γ ′
kvk + δ′

k , with γk, γ
′
k > 0, δk, δk ∈ R, and k = 1, 2, such that:
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i. a′ = b′.
ii. For all α ∈ R, Φi (α; V ′) = Φi (α; U ′).

iii. For all α ∈ R, Φ j (α; V ′) ⊇ Φ j (α; U ′).
Then γ ′

j S j (⟨V, b⟩) + δ′
j ! γ j S j (⟨U, a⟩) + δ j .

The Cardinal Utility Monotonicity axiom states: If two Bargaining Problems can be
transformed, by (possibly distinct) positive affine transformations of the utilities, so
that the conditions of the Individual Monotonicity axiom apply to the transformed
problems, then the solution utility levels for individual j in each of the original prob-
lems will map to points that preserve the inequality demanded by Individual Monoto-
nicity. Similar to above, the Cardinal Utility Monotonicity axiom implies Individual
Monotonicity. We now have the following axiomatisation of the Kalai–Smorodinsky
Solution:

Theorem 17 A Bargaining Solution, defined over the class of compact and a-com-
prehensive Bargaining Problems, is the Kalai–Smorodinsky Solution if and only if it
satisfies the Weak Pareto Efficiency, Cardinal Utility Symmetry and Cardinal Utility
Monotonicity axioms (S1*, S2* and S5*).

The proof of Theorem 17 is presented in “Appendix A.6”. Theorem 17 is useful
because the step from axioms S1*, S2* and S3* to preference axioms in the Condi-
tional Bargaining Problem framework is simplified.

Recall the intuitive content of the Kalai–Smorodinsky Solution, K . Each individ-
ual is receiving the same proportions of their best and their disagreement utilities. The
use of Subjective Mixtures allows us to express this directly as a preference condi-
tion: each individual receives the same Subjective Mixture of their most preferred and
their disagreement outcomes. Define the Conditional Kalai–Smorodinsky Solution as
follows:

Definition 18 (Conditional Kalai–Smorodinsky Solution) A Conditional Kalai–Sm-
orodinsky Solution, for a Conditional Bargaining Problem ⟨A, d,"1,"2, E⟩, is an
efficient alternative (y1, y2) such that, for some λ ∈ [0, 1]:

(y1, y2) = λ(M1, M2) ⊕ (1 − λ)(d1, d2)

A straightforward substitution of the preference functionals, for each individual,
leads to the following elementary observation:

Observation 19 If preferences are Biseparable, then (y1, y2) is a Conditional Kalai-
Smorodinsky Solution if and only if it is an efficient alternative and:

(u1(y1), u2(y2)) = λ(u1(M1), u2(M2)) + (1 − λ)(u1(d1), u2(d2))

I will provide a Subjective Mixture foundation for the Conditional Kalai–Smoro-
dinsky Solution. We have already obtained P2* as preference foundations for axioms
S2*, respectively. Translating S1* to a preference condition P1* is straightforward.
Finally, I now suggest the following axiom:
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Axiom P5 (Subjective Monotonicity): If, for two Conditional Bargaining Problems
⟨A, d,"1,"2, E⟩ and ⟨A′, d ′,"1,"2, E⟩, the following conditions hold:

i. For all α ∈ [0, 1], %i (α; A,⊕1,⊕2) = %i (α; A′,⊕1,⊕2).
ii. For all α ∈ [0, 1], % j (α; A,⊕1,⊕2) ⊇ % j (α; A′,⊕1,⊕2)

iii. S j (⟨A, d,"1,"2, E⟩) = λM j ⊕ j (1 − λ)d j .
iv. S j (⟨A′, d ′,"1,"2, E⟩) = λ′M ′

j ⊕ j (1 − λ′)d ′
j .

Then λ ! λ′.

In words, the Subjective Monotonicity axiom is as follows. If two Conditional Bar-
gaining Problems are such that: Firstly, the same set of Subjective Mixtures of one
individual’s (possibly different) best and disagreement outcomes are available in each
feasible set. Secondly, the feasible set of one problem has at least as many Subjective
Mixtures of best and disagreement outcomes for the other individual, and this indi-
vidual receives a λ and a λ′ Subjective Mixture in the larger and smaller problem,
respectively. Then, the solution to the larger problem offers this individual a better
Subjective Mixture.

As with Subjective Contraction Independence, an immediate consequence of the
Subjective Monotonicity axiom is that the solution is now independent of the alterna-
tives dominated by the disagreement alternative. Suppose two problems have feasible
sets that are the same above the disagreement alternative, but are otherwise different.
Then conditions i. and ii. automatically hold. If the solutions are different, a con-
tradiction of Subjective Monotonicity (applied twice) will always result. For ease of
exposition we suppose, without loss of generality, that the problems are normal.

The simplest case is when i. and ii. hold, and further that M = M ′ and d = d ′.
Then the axiom requires that the solution does not get worse for one individual as
the feasible set of alternatives increases in a way favourable only to him. The axiom
does, however, imply more than this. The feasible sets of each problem could even
be disjoint, yet the axiom still has power. As Subjective Mixtures are used, it makes
perfect sense to discuss two feasible sets as having more available for one individual,
even if the feasible sets cannot be compared on the basis of set inclusion. In fact, if
conditions i. and ii. hold, and preferences are Biseparable, then there will always be
utilities such that the images of A′ and A can be compared by the typical set inclusion
approach used by Kalai and Smorodinsky’s Individual Monotonicity axiom. The fol-
lowing lemma clarifies this and provides the necessary preference foundation for the
Cardinal Monotonicity axiom:

Lemma 20 If preferences are Biseparable then a Conditional Bargaining Solution,
defined over the class of normal Conditional Bargaining Problems, satisfies Subjective
Monotonicity (P5) if and only if it satisfies Cardinal Utility Monotonicity (S5*) with
respect to the utilities concerned.

This section concludes with a preference foundation for the Conditional Kalai–
Smorodinsky Solution.

Theorem 21 A Conditional Bargaining Solution, defined over the class of d-Com-
prehensive Problems satisfying Structural Assumption 1, with each individual having
Biseparable preferences, is the Conditional Kalai–Smorodinsky Solution if and only
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if it satisfies the Weak Pareto Efficiency, Subjective Symmetry and Subjective Mono-
tonicity axioms (P1*, P2 and P5).

6 Separating the behavioural from the technical

This section will address an issue with how I have used of Subjective Mixtures. The
Subjective Mixture axioms above have included the use of Subjective Mixtures across
the entire [0, 1] interval. Some Subjective Mixture values are easily observable. For
other values it may take many observations, although the number of measurements
is finite. In either case, the conditions are falsifiable by observing preferences, and
we will call such conditions behavioural. Unfortunately, there are Subjective Mixture
values, such as a 1/3:2/3 mixture, that can only be verified approximately. Precise
elicitation of such values would require an infinite number of observations, if we were
to use iterations of preference averages. Conditions of this type, which are not readily
falsifiable, we will call technical. Continuity of preferences, for example, is an often
assumed technical condition.

Although technical assumptions are often necessary, it is desirable to separate the
axiom set into those that are purely behavioural and those that are technical. In this
sense, the axioms that have verifiable, empirical content may be assessed.1

I now offer a solution to this problem. The first step is to restrict our Subjective
Mixture axioms (Subjective Symmetry, Subjective Monotonicity and Subjective Con-
traction Independence) to hold only when the Subjective Mixtures involved are dyadic
rationals. The set of dyadic rationals is D := {β ∈ [0, 1] : β = ∑N

i=1 ai/2i , ai ∈
{0, 1}, N ∈ N}. For example, rewriting Subjective Symmetry:

Axiom P2* (Restricted Subjective Symmetry): If, for a Conditional Bargaining
Problem
⟨A, d,"1,"2, E⟩, the following hold:

i. For any α ∈ D , %1(α; A,⊕1,⊕2) = %2(α; A,⊕1,⊕2) and,
ii. S(⟨A, d,"1,"2, E⟩) = (λ1 M1 ⊕1 (1 − λ1)d1, λ2 M2 ⊕2 (1 − λ2)d2), where

λ1, λ2 ∈ D ,
then λ1 = λ2.

It is straightforward to rewrite Subjective Contraction Independence and Subjective
Monotonicity in a way that refers only to dyadic Subjective Mixtures. Since any dyadic
rational may be reached using finitely many Preference Average iterations, the axioms
restricted in this way are what I call behavioural.

The second step is to formulate a continuity condition. Let A be the set of all
compact subsets of X1 × X2. These are the feasible sets of our Conditional Bargaining
Problems. We may regard A as a topological space in its own right. In particular,
endow A with the Topology of Closed Convergence Tc (see, for example, Aliprantis
and Border 1999, pp. 119–123). Let {Ak} denote a sequence of feasible sets. Write
{⟨Ak, d,"1,"2, E⟩} → ⟨A, d,"1,"2, E⟩ whenever {Ak} → A in the Topology

1 Be warned, however, that one should judge axiom sets rather than axioms in isolation. we have already
discussed Cardinal Invariance, in this respect. An excellent example, regarding the interaction of continuity
of preferences with other axioms, is given by Wakker (1996, p. 225).
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of Closed Convergence. Note that all components of the problem are kept fixed,
except the set of feasible alternatives. The solution S is Tc-continuous if {⟨Ak, d,"1,

"2, E⟩} → ⟨A, d,"1,"2, E⟩ implies {S(⟨Ak, d,"1,"2, E⟩)} → S(⟨A, d,"1,"2,

E⟩). The following axiom insists that a Conditional Bargaining Solution be continuous
in this respect:

Axiom P6 (Continuity): S is Tc-continuous over A .

An intuitive interpretation of the Continuity axiom is that small changes of the
problem do not result in large changes in the solution. The Continuity axiom is the
technical condition that extends our restricted, behavioural axioms to the full force
axioms previously stated. The following theorems hold:

Theorem 22 A Conditional Bargaining Solution, defined over the class of Subjective
Mixture Closed Problems satisfying Structural Assumption 1, with each individual
having Biseparable preferences, is the Conditional Nash Solution if and only if it sat-
isfies Pareto Efficiency, the restricted Subjective Symmetry and Subjective Contraction
Independence axioms, and Continuity.

Theorem 23 A Conditional Bargaining Solution, defined over the class of d-Com-
prehensive Problems satisfying Structural Assumption 1, with each individual having
Biseparable preferences, is the Conditional Kalai–Smorodinsky Solution if and only if
it satisfies Weak Pareto Efficiency, the restricted Subjective Symmetry and Subjective
Monotonicity axioms, and Continuity.

If we restrict the Subjective Mixture axioms to dyadic rationals, we can be assured
that we are dealing with behavioural conditions. Unfortunately, it may still take a great
many observations to elicit certain values. Therefore, finding an equivalent axiom set
that uses only preference averages would constitute a significant improvement. I pres-
ent this problem for future research.

7 Closing comments

The aim of this paper was to find an approach to solving the Bargaining Problem that
does not rely on the use of risky lotteries. To achieve this, I proposed the notion of a
Conditional Bargaining Problem. This extension of a Bargaining Problem allows the
cardinal information about preferences to be measured. Specifically, we may apply
the toolkit developed under the title of Conjoint Measurement (Krantz et al. 1971).
The theory of Conjoint Measurement has been extensively developed as part of the
non-Expected Utility agenda.

This paper considered single, two-person bargaining problems. An interesting case
arises when the individuals are engaging in two or more separate problems, as in
Peters (1986). In that case, a conjoint structure arises naturally, without the need to
extend the problem. A topic for further research is to exploit that structure to derive
a simultaneous characterisation of the cardinal utilities and solutions within such a
riskless setting.

The Subjective Mixture methods of Ghirardato et al. (2003) are especially pow-
erful when applied to our approach. Firstly, Subjective Mixtures allowed us to use a
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mixture space-type framework, where one was not naturally provided. Secondly, the
use of Subjective Mixtures provided us with a currency that both reflects individual
preferences and, since they are uniquely determined, allows us to make interpersonal
comparisons. It also becomes possible to compare feasible sets where no obvious set
inclusion relation exists. Subjective Mixtures were used at every stage: to define the
structural assumptions (Subjective Mixture Closedness), to define axioms (Subjective
Symmetry, Subjective Monotonicity, Subjective Contraction Independence) and also
to state the preference content of the solutions.

The Subjective Mixture techniques used in this paper begin with the notion of a
Preference Average. Section 4 outlined the definition of a Preference Average. The
main justification for the term Preference Average was that such outcomes are util-
ity midpoints. Earlier, Vind (1987, 1991) had derived and studied such an operation
through observed preferences (see also Vind 2003, Chapter 7). There are several other
techniques for measuring utility midpoints. Most recently, Baillon et al. (2009) pre-
sented a particularly simple method. Starting with their method, or any of the ref-
erences contained there concerning utility midpoint elicitation, one can proceed to
construct Subjective Mixtures as described in Sect. 4. It should also be noted that util-
ity midpoints have been successfully elicited in several individual choice experiments
(Wakker and Deneffe 1996; Abdellaoui et al. 2007). In this sense, a conjoint extension
approach to solving Bargaining Problems relies on a proven technology.

Appendix

A.1 Proof of Lemma 5

Proof Preferences over X2
i are represented by a continuous function Vi . Fix any xi ≻i

yi and define a function f so that f (t) = Vi (ci (xi Et)Eci (t Eyi )) for all t ∈ Xi . f is
clearly continuous, being the composition of continuous functions. By the dominance
axiom, f (x) > Vi (xi Eyi ) > f (y). Then, since f is continuous on a connected set Xi ,
there is a zi so that f (zi ) = Vi (xi Eyi ) equivalent to the sought after indifference. One
can show xi ≻i zi ≻i yi and that zi is unique using the antisymmetry of preferences
and the dominance axiom. ⊓4

A.2 Proof of Theorem 10

Let S be a Bargaining Solution satisfying axioms S1, S2* and S5*. Let N denote the
Nash Solution. That N satisfies S1, S2* and S5* is elementary. We already know N
is well defined and satisfies S1, S2, S3 and S5. We will show S = N .

If a Bargaining Problem ⟨U, a⟩ is Cardinal Utility Symmetric then it can be affinely
transformed to a symmetric problem ⟨γU + δ, γ a + δ⟩. By S1 and S2*, the solution
S(⟨U, a⟩) maps to an efficient symmetric point. Such a point will also be selected by
N , so:

γ1S1(⟨U, a⟩) + δ1 = γ2S2(⟨U, a⟩) + δ2

= N1(⟨γU + δ, γ a + δ⟩) = N2(⟨γU + δ, γ a + δ⟩)
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Since N satisfies S3, Ni (⟨γU + δ, γ a + δ⟩) = γiNi (⟨U, a⟩) + δi for i = 1, 2. So,
S(⟨U, a⟩) = N (⟨U, a⟩).

Now suppose a Bargaining Problem ⟨U, a⟩ is not Cardinal Utility Symmetric. Apply
a positive affine transformation such that Ni (⟨γU +δ, γ a+δ⟩) = 1 and γi ai +δi = 0
for i = 1, 2. SinceN maximises the product α1α2, and the problem is convex, we must
have α1+α2 # 2 for any (α1,α2) ∈ γU +δ. Let U ′ = {(α1,α2) ∈ R2

+ : α1+α2 # 2}.
The Bargaining Problem ⟨U ′, (0, 0)⟩ is Cardinal Utility Symmetric (take γi = 1 and
δi = 0 for i = 1, 2) so axioms S1 and S2* imply:

S1(⟨U ′, (0, 0)⟩) = S2(⟨U ′, (0, 0)⟩) = 1

Since γU + δ ⊆ U ′ we may apply axiom S5* to get, for i = 1, 2:

γi Si (⟨U, a⟩) + δi = Si (⟨U ′, (0, 0)⟩) = 1

Finally, we have:

γi Si (⟨U, a⟩) + δi = Ni (⟨γU, γ a + δ⟩) = γiNi (⟨U, a⟩) + δi

So S(⟨U, a⟩) = N (⟨U, a⟩).

A.3 Proof of Lemma 13

Proof Substituting the preference functionals, it is clear that a normal Conditional
Bargaining Problem ⟨A, d,"1,"2, E⟩ is Subjectively Symmetric if and only if there
are utilities v1 and v2 such that v1(M1) = v2(M2) = 1 and v1(d1) = v2(d2) = 0
such that, for all α ∈ [0, 1], Φ1(α; v(A)) = Φ2(α; v(A)). The Subjective Symmetry
axiom then selects the alternative (y1, y2) such that v1(y1) = v2(y2) = λ. Clearly, any
other representation using appropriate utilities can be affinely transformed to coincide
with this normalised representation. The alternative selected by the axiom remains the
same if and only if the transformation of any other representation maps the solution
to the symmetric point in the normalised problem. This is true if and only if Cardinal
Utility Symmetry holds. ⊓4

A.4 Proof of Lemma 14

Proof Consider any two normal Conditional Bargaining Problems ⟨A, d,"1,"2, E⟩
and ⟨A′, d ′,"1,"2, E⟩. Since preferences are Biseparable, positive affine transfor-
mations (two for each individual) of the utilities exist, denote them v1, v2 and w1, w2,
with v1(M1) = v2(M2) = w1(M ′

1) = w2(M ′
2) = 1 and v1(d1) = v2(d2) =

w1(d ′
1) = w2(d ′

2) = 0. Then, Subjective Contraction Independence holds if and
only if the following implication holds: w(A′) ⊆ v(A), S(⟨v(A), v(d)⟩) = (λ∗

1, λ
∗
2),

and (λ∗
1, λ

∗
2) ∈ w(A′), jointly imply S(⟨w(A′), w(d ′)⟩) = (λ∗

1, λ
∗
2).

Consider any other utility representations of the two Conditional Bargaining Prob-
lems. If there is a non-empty set of quartets of positive affine transformations (each
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individual has one for each problem), each quartet transforming the problems to sat-
isfy conditions i., ii. and iii. of Cardinal Contraction Independence, then those that
normalise each problem must be a quartet in this set. When this is possible, all differ-
ent utility representations of the two problems’ solution alternatives must map to the
same point, (λ∗

1, λ
∗
2), in the normalised problems. Equivalently, Cardinal Contraction

Independence holds. ⊓4

A.5 Proof of Theorem 15

Suppose preferences are Biseparable. P1 is clearly equivalent to S1. For normal prob-
lems, Lemma 13 established the equivalence of P2 and S2*, and Lemma 14 established
the equivalence of P3 and S3*. As discussed above, this immediately extends to non-
normal problems. By Observation 12 the Conditional Nash Solution has the same
utility representation as the Nash Solution, and a Conditional Bargaining Problem is
compact and Subjective Mixture Closed if and only if it is compact and convex in
utility space. Now apply Theorem 10.

A.6 Proof of Theorem 17

Let S be a Bargaining Solution satisfying axioms S1*, S2* and S3*. Let K denote
the Kalai–Smorodinsky Solution. That K satisfies S1*, S2* and S3* is elementary.
We already know K is well defined and satisfies S1*, S2, S3 and S4.

Take any a-Comprehensive Bargaining Problem, ⟨U, a⟩. We will show S(⟨U, a⟩) =
K (⟨U, a⟩) = λ. Define ⟨U ′, a′⟩ = ⟨γU + δ, γ a + δ⟩, where γ1, γ2, δ1, δ2 are chosen
so that B(⟨U ′, a′⟩) = (B ′

1, B ′
2) = (1, 1) and a′ = (0, 0). This problem is a′-Com-

prehensive. Since K satisfies S4, K (⟨U ′, a′⟩) = λ′ = γ λ + δ. Now consider the
following sets:

T := comp[λ′; a′] \ {λ′ + R2
++}

T ′ := comp[(B ′
1, a′

1), (a′
2, B2), λ

′; a′]

The problems ⟨T, a′⟩ and ⟨T ′, a′⟩ are symmetric, so by S1* and S2*,

S(⟨T, a′⟩) = S(⟨T ′, a′⟩) = λ′

Notice that T ⊇ U ′ ⊇ T ′, so using S3*:

S(⟨T, a′⟩) ! γ S(⟨U, a⟩) + δ ! S(⟨T ′, a′⟩)

Combining the above, S(⟨U, a⟩) = K (⟨U, a⟩) as required.

A.7 Proof of Lemma 20

Proof Consider any two normal Conditional Bargaining Problems ⟨A, d,"1,"2, E⟩
and ⟨A′, d ′,"1,"2, E⟩. Since preferences are Biseparable, there exists positive affine
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transformations (two for each individual) of the utilities involved, denote them v1, v2
and w1, w2, with v1(M1) = v2(M2) = w1(M ′

1) = w2(M ′
2) = 1 and v1(d1) =

v2(d2) = w1(d ′
1) = w2(d ′

2) = 0. Then conditions i. and ii. of Subjective Monoto-
nicity hold if and only if, for all α ∈ [0, 1]:

Φi (α; v(A)) = Φi (α;w(A′)) and Φ j (α; v(A)) ⊇ Φ j (α;w(A′))

The solution S gives j a feasible outcome for each problem. Denote these y j and
y′

j . These outcomes are Subjective Mixtures of j ′s best and worst outcomes in each
problem. Let λ and λ′ denote the values of these Subjective Mixtures. The values of
these mixtures coincide with the utility numbers in the normalised representation. So,
let v j (y j ) = λ and w j (y′

j ) = λ′. Subjective Monotonicity requires that λ ! λ′, or
equivalently v j (y j ) ! w j (y′

j ).
We chose normalised utilities v j and w j so, as a consequence, condition ii. of

Subjective Monotonicity holds if and only if, for all α ∈ [0, 1], Φ j (α; v(A)) ⊇
Φ j (α;w(A′)). If we replace the utilities with any other positive affine transforms,
γ v j + δ and γ ′w j + δ′, to maintain the equality γ v j (d j ) + δ = γ ′w j (d j ) + δ′, we
must have δ = δ′. Then condition ii. remains true if and only if γ ! γ ′. Therefore,
whenever there are transformations that assign the same utility numbers to the disagree-
ment points and preserve condition ii., it follows that γ v j (y j ) + δ ! γ ′w j (y′

j ) + δ′.
This is true if and only if Cardinal Utility Monotonicity holds. ⊓4

A.8 Proof of Theorem 21

Suppose preferences are Biseparable. P1* is clearly equivalent to S1*. For normal
problems, Lemma 13 established the equivalence of P2 and S2*, and Lemma 20
established the equivalence of P5 and S5*. As discussed, this immediately extends to
non-normal problems. By Observation 19 the Conditional Kalai–Smorodinsky Solu-
tion has the same utility representation as the Kalai–Smorodinsky Solution, and a
normal Conditional Bargaining Problem is compact and d-Comprehensive if and only
if it is compact and u(d)-Comprehensive in utility space. Now apply Theorem 17.

A.9 Proof of Theorems 22 and 23

The proofs of Theorems 22 and 23 are outlined together. I detail the proof that, given
Weak Pareto Efficiency, a solution satisfies Restricted Subjective Symmetry and Con-
tinuity (P2* and P6) only if satisfies Subjective Symmetry. Once the proof of this
is understood, the remaining conditions may be verified similarly, so the details are
omitted.

Fix a disagreement point, d, and consider a solution as a function S : A → X1×X2.
Preferences are Biseparable with ui : Xi → R, i = 1, 2, being the associated the util-
ity functions. Define u : X1× X2 → R2 such that u = (u1, u2). Let c(R2) be the set of
compact subsets of R2, endowed with the Hausdorff metric. Define U : A → c(R2)

so that for A ∈ A , U (A) = u(A). Define Su : c(R2) → R2 such that Su = U ◦ S.
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For clarification, one may verify that the following diagram commutes:

A
U !!

S
""

c(R2)

Su

""
X1 × X2 u

!! R2

By the above construction, Su is continuous in the Hausdorff metric if and only if S
is continuous in the topology of closed convergence.

I now show that, given P1*, axioms P2* and P6 imply axiom P2. Let ⟨A, d,"1,"2
, E⟩ be a Conditional Bargaining Problem satisying condition i. of axiom P2*. Choose
the utilities that normalise this problem, u(M1, M2) = (1, 1) and u(d1, d2) = (0, 0),
and denote U (A) = T . Condition i of P2* translates to the following condition for
T : for any α,β ∈ D , (α,β) ∈ T iff (β,α) ∈ T . That is, the set T ′ := T ∩ D2 is
symmetric. By the denseness of the dyadic rationals, the closure of T ′ equals T , so T
is easily shown to be symmetric.

There is a unique point that is symmetric and efficient, denote this (λ, λ). I show
that Su(T ) = (λ, λ). Firstly, if λ ∈ D , then condition ii. of P2* is satisfied and the
result follows. Now suppose λ /∈ D . Clearly, λ can be approximated using dyadic
rationals. That is, there exists a sequence {αkλ}k∈N where, for each k, αkλ ∈ D and
limk→∞{αkλ}k∈N = λ. Now consider the sequence of sets {αk T }k∈N. For each k, αk T
is symmetric, with a unique symmetric and efficient point (αkλ,αkλ). Furthermore,
αkλ ∈ D , so for each k, Su(αk T ) = (αkλ,αkλ) by axiom P2*. Since (αkλ,αkλ) →
(λ, λ), and Su is continuous in the Hausdorff metric, Su(T ) = (λ, λ). This holds if
and only if S(⟨A, d,"1,"2, E⟩) = (λM1 ⊕1 (1 − λ)d1, λM2 ⊕2 (1 − λ)d2), and
axiom P2 follows as required.

Using similar approaches to the above, one may show that the restricted versions
of P3 and P5, along with Continuity P6, imply the full versions of P3 and P5. Finally,
one can appeal to Theorems 15 and 21 to complete the proofs of Theorems 22 and 23,
respectively.
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